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Explaining market price behavior of the U.S. capital stock is among the most fundamental

challenges facing economists. The present value relationship between prices, discount rates

and future cash flows has proved a valuable lens for understanding stock price variation.

It reveals that price changes are wholly driven by fluctuations in investors’ expectations of

future returns and cash flow growth. Understanding asset prices amounts to understanding

the dynamic behavior of these expectations.

The most common approach to measuring aggregate return and cash flow expectations

is predictive regression. As suggested by the present value relation, research has found

the aggregate book-to-market ratio to be among the most informative predictive variables.

Typical in-sample estimates find that about 10% of annual return variation (1% of annual

dividend growth variation) can be explained by forecasts based on the aggregate book-

to-market ratio, but that out-of-sample the predictive power vanishes.1 In this paper we

find that reliance on aggregate quantities drastically understates the degree of value ratios’

predictive content for both returns and cash flow growth, and hence understates the volatility

and accuracy of investor expectations. Our estimates suggest that as much as 10% of the

out-of-sample variation in annual market returns (25% for dividend growth), and somewhat

more of the in-sample variation, can be explained by the cross section of past disaggregated

value ratios.2

To harness the disaggregated information we represent the cross section of asset-specific

book-to-market ratios as a dynamic latent factor model. We relate these disaggregated value

ratios to aggregate expected market returns and cash flow growth. Our model highlights the

idea that the same dynamic state variables driving aggregate expectations also govern the

dynamics of the entire panel of asset-specific valuation ratios. This representation allows

us to exploit rich cross-sectional information to extract precise estimates of the market’s

1See Cochrane (2005) and Koijen and Van Nieuwerburgh (2010) for surveys of return and cash flow
predictability evidence using the aggregate price-dividend ratio. Similar results obtain from forecasts based
on the aggregate book-to-market ratio.

2This out-of-sample performance is robust across many choices of training sample period (see Figures 3-5
below), addressing concerns about out-of-sample statistics recently discussed by Hansen and Timmermann
(2011) and Inoue and Rossi (2011) among others.
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expectations.

Our approach attacks a challenging problem in empirical asset pricing: How does one

exploit a wealth of predictors in relatively short time series? If the predictors number near or

more than the number of observations, the standard ordinary least squares (OLS) forecaster is

known to be poorly behaved or nonexistent (see Huber (1973)). Our solution is to use partial

least squares (PLS, Wold (1975)), which is a simple regression-based procedure designed to

parsimoniously forecast a single time series using a large panel of predictors. We use it to

construct a univariate forecaster for market returns (or cash flow growth) that is a linear

combination of assets’ valuation ratios. The weight of each asset in this linear combination

is based on the covariance of its value ratio with the forecast target. Much of our analysis

relies on results from Kelly and Pruitt (2011), who derive the properties of PLS in the factor

model setting that applies directly to the asset pricing model considered here.

Using data from 1930-2009, PLS forecasts based on the cross section of portfolio-level

book-to-market ratios achieve an out-of-sample predictive R2 as high as 9.9% for annual

market returns, 25.4% for annual dividend growth and 0.8% for monthly market returns

(in-sample R2 of 32.9%, 44.5% and 4.1%, respectively). Since we construct a single factor

from the cross section, our results can be compared directly with univariate forecasts from

the many alternative predictors that have been considered in the literature. In contrast to

our results here, previously studied predictors typically perform well in-sample but become

insignificant out-of-sample, often performing worse than forecasts based on the historical

mean return (Goyal and Welch (2008)).

Our estimates shed new light on the dynamic processes for expected one-year-ahead re-

turns and cash flow growth rates. We find that the volatility of expected one-year returns

since 1955 is 6.9% based on out-of-sample estimates (6.7% from in-sample estimates), nearly

80% higher than the volatility estimated from the aggregate book-to-market ratio. We also

find much less persistence in expected returns, with an autocorrelation of 0.20 (0.44 from

in-sample estimates), contrasting the persistence of 0.91 based on the aggregate book-to-
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market ratio. The evidence for expected market cash flow growth is similar. This degree of

variability in short term expectations is difficult to reconcile with fundamentals-based struc-

tural asset pricing models, which generate persistent, low volatility fluctuations in expected

market returns (e.g. Campbell and Cochrane (1999) or Bansal and Yaron (2004)).

We establish the robustness of our main findings in a number of ways. We evaluate various

degrees of portfolio aggregation and find similar results whether we use six, 25 or 100 size and

book-to-market sorted portfolios, with forecast performance that increases in the number of

portfolios. Applying our method to individual stocks rather than portfolios corroborates

our main results. Using the entire cross section of CRSP stocks (a cross section of several

thousand value ratios), we find an out-of-sample one month return forecasting R2 of nearly

1.6%. Sensitivity analysis of out-of-sample predictive performance to different subsamples

shows that our results are robust to virtually any choice of sample split after 1955. Our

results are also robust to data from outside the U.S. We forecast returns on the value-

weighted aggregate world portfolio (excluding the U.S.) by applying PLS to an international

cross section of non-U.S., country-level valuation ratios, available beginning in 1975. We

find an out-of-sample predictive R2 of 2.3% (5.3% in-sample) at the monthly frequency,

corroborating our results in U.S. data. Lastly, we find similar results when applying PLS to

the cross section of portfolio price-dividend ratios rather than book-to-market ratios.

Why do disaggregated prices produce such accurate forecasts? To illustrate the advantages

of cross section information, consider a simple CAPM example.3 In particular, suppose one

period expected market returns µt and expected return on equity gt are the two common

factors in the economy, and the book-to-market ratio of any asset i is

vi,t = ai − bi,µµt + bi,ggt + ei,t (1)

3The present value system in Equations 1 and 2 obtains as a special case of the model in Section I. It
arises in an economy where µt and gt each follow an AR(1), individual expected returns obey an exact one
factor model as in the CAPM, µi,t = µi,0 + ci,µµt, and individual expected return on equity obeys a one
factor model, gi,t = gi,0 + ci,ggt + ei,t. This special case is similar to the formulation of Polk, Thompson and
Vuolteenaho (2006).
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while the market book-to-market ratio is

vt = a− bµµt + bggt. (2)

Equation 2 highlights the predictive relationship between vt, realized market returns (rt+1 =

µt + ǫrt+1) and return on equity (∆cft+1 = gt + ǫdt+1). However, it also evokes limitations of

the aggregate system for understanding market expectations. Predictive regressions of rt+1

on vt take the form

Et[rt+1|vt] = â+ b̂vt = â+ b̂(bµµt + bggt)

and thus are unduly influenced by information about return on equity. The reciprocal

problem arises in forecasting ∆cft+1. To overcome this difficulty, researchers have taken

present value approaches that account for the joint relationship among vt, µt and gt (see

Cochrane 2008b, Lettau and Van Nieuwerburgh 2008, van Binsbergen and Koijen 2010).

While this begins to disentangle the link between prices and expectations, these joint systems

continue to rely solely on aggregate variables. Because both µt and gt are latent, each adds

noise to the signal extraction problem of the other.4 If there exist other signals for µt and gt

in the economy, incorporating them will improve estimates of the latent expectations. This

is how disaggregated valuation ratios in Equation 1 become a valuable information source

as long as each vi,t provides a non-redundant signal for µt and gt.

PLS conveniently reduces the many available signals to an optimal forecast with a series of

ordinary least squares regressions. The first stage consists of “reverse” regressions in which

individual valuation ratios for each asset are regressed on the forecast target. Next, in each

time period, we run second stage cross-sectional regressions of assets’ valuation ratios on

firm-specific regression coefficients estimated in the first stage. In the final stage, aggregate

return and cash flow growth realizations are regressed on the fitted factors from the second

stage, delivering our final filtered estimates for unobservable return and growth expectations.

4This remains true despite the absence of measurement error in the aggregate book-to-market expression,
as pointed out by Fama and French (1988).
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The final-stage predictor is a discerningly-constructed linear combination of disaggregated

value ratios that parsimoniously incorporates information from individual valuation ratios

into predictions of future aggregate returns and cash flow growth.

The preceding CAPM example is also useful to develop intuition for how PLS works. Each

vi,t is a function of only the expected portion of returns and cash flows and is uncorrelated with

their unanticipated future shocks. Therefore, first stage time series regression coefficients of

vi,t on rt+1 and ∆cft+1 (which serve as observable proxies for the latent factors µt and gt)

describe how each firm’s valuation ratio depends on the true factors µt and gt. When the

coefficients bi,µ and bi,g differ across i, fluctuations in µt and gt cause the cross section of

value ratios to fan out and compress over time. The first-stage coefficient estimates provide

a map from the cross-sectional distribution of vi’s to the latent factors. Second-stage cross

section regressions of vi,t on first-stage coefficients use this map to estimate the factors at each

point in time. Because the first-stage regression takes an errors-in-variables form, second-

stage regressions estimate latent expectations (µt, gt)
′ with a multiplicative bias. Since OLS

forecasts are invariant to scalar multiples of regressors, the third-stage regression of realized

returns and growth on the estimated factors delivers consistent estimates of µt and gt.

The earliest predecessors of this study use predictive regressions based on the aggregate

price-dividend ratio, including Rozeff (1984), Campbell and Shiller (1988), Fama and French

(1988). A large subsequent literature has evolved testing the predictive relation based on

aggregate valuation ratios, including Stambaugh (1986, 1999), Hodrick (1992), Goetzmann

and Jorion (1993), Nelson and Kim (1993), Kothari and Shanken (1997), Lewellen (2004),

Paye and Timmermann (2006), and Pástor and Stambaugh (2009a).

More directly, our paper builds on recent literature that exploits the present value rela-

tion to identify market expectations for returns and dividends, including van Binsbergen and

Koijen (2010), Ghosh and Constantinides (2010), Ferreira and Santa-Clara (2010), Cochrane

(2008a,b), Pástor, Sinha, and Swaminathan (2008), Rytchkov (2008), Campbell and Thomp-

son (2008), Lettau and Van Nieuwerburgh (2008), Ang and Bekaert (2007), Lettau and
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Ludvigson (2005), Brennan and Xia (2005) and Menzly, Santos and Veronesi (2002). While

these papers focus on aggregate present value models, the key to our analysis is incorporat-

ing cross-sectional information. Vuolteenaho (2002), Hansen, Heaton, and Li (2008), Pástor

and Veronesi (2003, 2006), Kiku (2006), and Kelly (2011) also model valuation ratios for

individual assets, though we are the first to exploit a factor structure in value ratios to form

market return and cash flow forecasts.

The economics literature mainly relies on principal components (PCs) to condense infor-

mation from the large cross section into a small number of predictive factors before estimating

a linear forecast, an approach exemplified in the macro-forecasting literature by Stock and

Watson (2002) and Bai and Ng (2006). PC forecasts based on macroeconomic indicators

have recently been applied in the context of stock return prediction by Ludvigson and Ng

(2007). The key difference between principal components and partial least squares is their

method of dimension reduction. PLS condenses the cross section according to covariance

with the forecast target and chooses a linear combination of predictors that is optimal for

forecasting. On the other hand, PC condenses the cross section according to covariance

within the predictors. The principal components that best describe predictor variation are

not necessarily the factors most useful for forecasting, and therefore PCs can produce subop-

timal forecasts (see Kelly and Pruitt (2011) for a detailed discussion). As we show, principal

components have little forecasting success in our present value setting.

PLS is reminiscent of two-pass regression used in tests of cross-sectional beta-pricing mod-

els (see Fama and MacBeth 1973, Shanken 1992 and Jagannathan and Wang 1998).5 Both

techniques rely on cross-sectional dispersion of financial variables to infer market risk prices.

There are two key differences between our three-pass regression approach and two-pass return

tests. First, our cross section is constituted of valuation ratios rather than returns. Second,

we string together period-by-period estimates from second-stage regressions to construct our

key predictor variable, as opposed to averaging second-stage output over time to find a single

5Kelly and Pruitt (2011) formalize the sense in which the Fama-MacBeth procedure can be interpreted
as a latent factor estimator called the three-pass regression filter.
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risk price. Our approach is also related to Polk, Thompson and Vuolteenaho (2006) who use

a CAPM-motivated two-pass approach to forecasting returns, and to Chowdhry, Roll, and

Xia (2005), who construct estimates of the latent inflation time series from the cross section

of returns using two-pass regression.

In the next section we present an economic framework for the cross section of present

values. Section II introduces partial least squares and relevant results from Kelly and Pruitt

(2011). In Section III we present empirical findings, compare alternative methodologies and

discuss our results. We present our conclusions in Section IV. Details about PLS, as well as

additional proofs, technical assumptions and other details, are relegated to the appendix.

I The Cross-Sectional Present Value System

We assume that one-period expected log returns and log cash flow growth rates across assets

and over all horizons are linear in a set of common factors6

µi,t = Et[ri,t+1] = γi,0 + γ ′

iF t

gi,t = Et[∆cfi,t+1] = δi,0 + δ′

iF t + εi,t. (3)

Equation 3 states that, conditional on time t information, expected one-period returns and

growth rates are driven solely by the (KF × 1) vector of all common factors F t. For µi,t any

Kf ≤ KF factor loadings can be non-zero and hence the remaining KF −Kf factors do not

explain expected returns; an analogous situation exists for gi,t.

To emphasize the parsimony of our approach, we will focus on the case Kf = 1 (though

our approach generalizes to multiple factors). The factor loading vectors γi and δi sum-

6Factor models are analytically tractable and are sufficiently general to subsume a wide range of models
considered in the asset pricing literature. Asset pricing models, both theoretical and empirical, link individual
expected returns to aggregate expected returns either directly, as in the CAPM (Sharpe 1964, Lintner 1965,
Treynor 1961) and Fama-French model (Fama and French 1993), or indirectly via common state variables,
as in Merton’s (1973) ICAPM. Similarly, theoretical models commonly assume a factor structure in dividend
growth (Connor 1984, Bansal and Viswanathan 1993, and Bansal, Dittmar, and Lundblad 2005, among
others).
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marize how market expectations respond to movements in the underlying economic factors.

We assume that assets’ expected returns are determined by systematic factors and possess

no idiosyncratic behavior.7 This restriction is not imposed for individual asset’s expected

dividend growth, which may possess an idiosyncratic component, εi,t. The aggregate market

obeys the same structure, with no i subscripts, and we impose that the factor model is exact

for aggregate dividend growth:

µt = γ0 + γ ′F t

gt = δ0 + δ′F t. (4)

Realized returns and growth rates are equal to their conditional expectations plus an

unforecastable shock:

ri,t+1 = µi,t + ηri,t+1

∆cfi,t+1 = gi,t + ηci,t+1.

Finally, we assume that the factor vector evolves as a first order vector autoregression8

F t+1 = Λ1F t + ξt+1. (5)

The above structure may be embedded in the linearized present value formula of Vuolteenaho

(2002). This accounting-based identity relates an asset’s log book-to-market ratio to future

discount rates and earnings growth

vi,t =
κi

1− ρi
+

∞
∑

j=1

ρj−1
i Et[−ri,t+j +∆cfi,t+j ].

7This assumption can be relaxed. Allowing for an orthogonal idiosyncratic component in firms’ expected
returns has no impact on the development or implementation of our approach.

8That F t is a first order process is without loss of generality since any higher order vector autoregression
can be written as a VAR(1).
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where vi,t is the log book-to-market ratio of stock i, ri,t+j is its log return, ∆cfi,t+j is its

return on equity (ROE), and κi and ρi are linearization constants. ROE is defined as9

ROEt+j = log

(

1 +
earningst+j

book equityt+j−1

)

.

This weighted sum of expected one-period returns and growth rates over all future horizons,

combined with (3) and (5), reduces to the following expression for the ex ante valuation ratio

vi,t = φi,0 + φ′

iF t + εi,t, (6)

where formulas for φi,0,φi and εi,t are provided in Appendix A.A. Equations 4 and 6 unify

disaggregated valuation ratios and aggregate expectations via a common factor model. They

also provide a framework for utilizing cross section information to achieve our ultimate goal

of precisely estimating conditional expected market returns and cash flow growth.

An alternative to Vuolteenaho’s (2002) present value system is the well known Campbell

and Shiller (1988) present value identity, which relates the log price-dividend ratio of an asset

to its future discount rates and dividend growth. The Campbell-Shiller identity also falls into

the framework of Equations 3-6 when vi,t is the log price-dividend ratio, ri,t+j is the log return,

and ∆cfi,t+j is log dividend growth. Fama and French (2000) show a steep downward trend

the fraction of U.S. firms paying dividends, with only 20.8% of firms classified as dividend

payers in 1999. Because price-dividend ratios are undefined for the majority of stocks, our

analysis focuses on the cross section of book-to-market ratios. However, we do consider the

performance of price-dividend ratios as a robustness check.

9Vuolteenaho (2002) represents this identity in terms of excess returns. We use his identity exactly,
though we represent it in terms of returns rather than excess returns.
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II Estimation

In this section we outline our empirical methodology, which is based on Kelly and Pruitt’s

(2011) generalization of partial least squares. Interested readers can refer to that paper for

detailed econometric development and proofs of results stated below. Assumptions underly-

ing the stated results are explained here and made precise in Appendix A.B.

II.A Setup

To ease the algebraic development we first establish notation. Partial least squares forecasts

use two sets of inputs. The first input is the forecasting target, which in general takes the

form yt+1 = β0 + β′F t + ηt+1. We will focus primarily on two targets, aggregate market

returns rm and cash flow growth ∆cfm, implying

yt+1 =











γ0 + γ ′F t + ηrt+1 if yt+1 = rm,t+1

δ0 + δ′F t + ηct+1 if yt+1 = ∆cfm,t+1.

Defining F
(T×KF )

= [F 1,F 2, ...,F T ]
′, the matrix representation of yt+1 is

y
(T×1)

= [y2, y3, ..., yT+1]
′

= ιβ0 + Fβ + η

where β0,β are defined in the obvious way for either rm,t+1 or ∆cfm,t+1. The second input

is the cross section of book-to-market ratios vi,t = φi,0 +φ′

iF t + εi,t (i = 1, ..., N). These are

arranged into the vector xt = (v1,t, ..., vN,t)
′ and stacked as

X
(T×N)

= [x1,x2, ...,xT ]
′

= ιφ′

0 + FΦ′ + ε
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with φ0
(N×1)

= [φ1,0, φ2,0, ..., φN,0]
′ and Φ

(N×KF )
= [φ1,φ2, ...,φN ]

′.

II.B The Estimator

PLS can be implemented by the following series of ordinary least squares regressions. In the

first stage, we run a time series regression of the book-to-market ratio for each stock i on

the forecast target

vi,t = φ̂i,0 + φ̂
′

iyt+1 + ei,t.

The resulting estimate φ̂i describes the sensitivity of each vi,t to the latent factor driving the

forecast target.

In the second stage, for each period t, we run a cross-sectional regression of assets’ book-

to-market ratios on their loadings estimated in the first stage

vi,t = ĉt + F̂ t

′

φ̂i + wi,t.

Here, the first stage loadings become the independent variables, and the latent factors F t

are the coefficients to be estimated. The first two stages exploit the factor nature of the

system to draw inferences about the underlying factors. As the factors fluctuate over time,

the cross section of valuation ratios fans out or compresses. If the true factor loadings φi

were known, we could consistently estimate the latent factor time series by simply running

cross section regressions of vi,t on φi period-by-period. Since φi is unknown, the first-stage

regression coefficients provide a preliminary description of how each vi,t depends on F t. This

first stage regression sketches a map from the cross-sectional distribution of value ratios to

the latent factors. Second-stage cross section regressions of vi,t on first-stage coefficients use

this map to produce estimates of the factors at each point in time.

The third step in the filter runs a predictive regression of realized returns or cash flow

growth rates on the lagged factors estimated in the second stage. This final regression is the

culmination of the multi-asset present value system. It parsimoniously combines information
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from individual assets’ valuation ratios to arrive at a prediction of future aggregate returns

and dividend growth. The ultimate predictor, F̂ t, is a discerningly-constructed linear com-

bination of disaggregated price-dividend ratios that collapses the cross section system to its

fundamental driving factors. The R2 from the final step regression summarizes the predic-

tive power of the multi-asset present value model; that is, the predictive accuracy of market

expectations embodied in valuation ratios.

Kelly and Pruitt (2011) provide a one-step representation of this algorithm:

ŷ = ιȳ + JTXJNX
′JTy (y′JTXJNX

′JTXJNX
′JTy)

−1
y′JTXJNX

′JTy, (7)

where JL ≡ IL − L−1ιLι
′

L, IL is the L-dimensional identity matrix and ιL is a L-vector of

ones. J matrices are present since each regression step is run including a constant regressor.

This procedure is consistent: It asymptotically recovers the latent expectations of ag-

gregate market returns and cash flow growth as the number of predictors and time series

observation both become large.10 In particular, Theorems 1 and 4 in Kelly and Pruitt (2011)

show that β̂0 + β′F̂ t is normally distributed around Et[yt+1] under the assumptions in Ap-

pendix A.B as N, T → ∞. These assumptions are quite weak. The key assumption is that

log book-to-market ratios obey a linear factor structure, which is consistent with a range of

theories for conditional expected returns (assuming that ROE is also linear in its factors).

The remaining assumptions are largely technical, and impose that second moments are finite

and probability limits are well-behaved, that there is limited time series and cross-sectional

autocorrelation among elements of the residual matrices η and ε, and impose that innova-

tions to returns and dividend growth are asymptotically orthogonal to lagged factors and

value ratios.

The general version of our theory accommodates multiple factors in both returns and

10Because the first-stage regression takes an errors-in-variables form, coefficients estimated in the first
and second stage are biased. The third regression step accounts for this bias, and removes this effect from
the ultimate forecast of y, since least squares fitted values are invariant to scalar multiples of regressors or
additive constants. See the consistency argument in Kelly and Pruitt (2011) for details.

12



cash flow growth. In the interest of parsimony, and to highlight the power of our approach

compared to the large set of alternative univariate predictors, we assume that returns and

cash flow expectations are each driven by a single factor (though these factors are allowed

to be different for returns versus growth rates). Extending our analysis to extract additional

factors from the cross section of valuation ratios transforms our third step forecasts into

multivariate predictive regressions, rather than univariate predictions, and can potentially

improve forecastability beyond what we document below.

II.C In-Sample Versus Out-of-Sample Implementation

Throughout our empirical analysis we consider both in-sample and out-of-sample approaches

to implementing our forecasts. To outline the differences in information sets it is convenient

to work within the three-stage regression construction of the filter rather than the direct

formulation in (7).

The basic implementation, which uses all available information, is a purely in-sample

estimation. First-stage regressions use the full time series of data to estimate factor loadings.

Second-stage regressions that produce the predictor variable at each time t use only price-

dividend ratio data at time t and constant factor loadings estimated in the first stage. Our

predictive factor is exactly this second-stage regression and therefore is a linear combination

of time t data that does not contain look-ahead bias. Third-stage predictive regressions are

also run in-sample.

In the full information version it is possible that first-stage regressions introduce a small

sample bias in our predictors since first-stage factor loadings are based on the full time series.

This is analogous to small sample bias in standard OLS predictive regression (cf. Stambaugh

(1986) and Nelson and Kim (1993)), which enters into forecasts via estimated predictive coef-

ficients.11 Consider, for instance, OLS forecasts of rt+1 on some predictor zt, where both r and

z are mean zero. The in-sample estimated coefficient is b̂T = ( 1
T

∑T−1
t=0 rt+1zt)/(

1
T

∑T−1
t=0 z2t ).

11Small sample bias also arises from the preliminary parameter estimation step of a Kalman-filtered state
space.
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The forecast for rt+1 is given by b̂T zt, thus the targeted observation is directly contributing

through the parameter estimate an order of 1/T of the total information in its own forecast.

For small T , this can favor false detection of predictability. However, this bias is truly a small

sample phenomenon because each future observation has vanishing importance for first-stage

coefficient estimates. Our annual forecasts consists of overlapping observations spanning up

to 80 years, while our monthly forecasts provide up to 960 non-overlapping time series ob-

servations. While neither of these sample sizes is particularly small, we nonetheless take the

possibility of small sample bias very seriously.

Thus, our second implementation is a pure (recursive) out-of-sample analysis, and these

results serve as the focus of our empirical analysis. The procedure we use is a standard

out-of-sample estimation scheme which has been well-studied in the literature (e.g. Goyal

and Welch (2008)). The main idea is to run first- and third-stage estimations on training

samples that exclude the return or cash flow observation ultimately forecast. We split the

full T -period sample at date τ , using the first τ observations as a training sample and the

last T − τ observations as the left-out sample. We estimate first-stage factor loadings using

observations {1, ..., τ}. Then, for each period t ∈ {1, ..., τ}, we estimate the time t value of

our predictor variable using the cross section of valuation ratios at t and first-stage coefficients

(which are based on data {1, ..., τ}). We then estimate the predictive coefficient in a third-

stage forecasting regression of realized returns (or cash flow growth) for periods {2, ..., τ}

on the factor extracted from {1, ..., τ − 1}. Finally, our out-of-sample forecast of the τ + 1

return is the product of the third-stage predictive coefficient and the time τ second-stage

result. This procedure is then repeated recursively, next using only data from {1, ..., τ + 1},

to construct a forecast for the return at τ + 2, until the entire sample of length T has been

exhausted.

All of our analyses are performed using data at the monthly frequency. The out-of-

sample procedure just described may be applied to one month forecasts without modification.

Annual out-of-sample forecasts require additional care to account for overlap in monthly
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observations. Hence for annual returns we use the training sample {1, ..., τ} to estimate

all model coefficients for the purpose of forecasting the annual return though τ + 12. The

resulting annual horizon forecasts are genuinely out-of-sample.

Inference for in-sample one month forecasts is based on the asymptotic distributions for

PLS estimates derived in Kelly and Pruitt (2011). For one year forecasts, we use overlapping

data and must adjust our standard errors to reflect the dependence that this introduces into

forecast error. We do this in three ways. First, we calculate Kelly and Pruitt (2011) standard

errors only using forecast errors from December of each year. This avoids the overlapping

observations problem and, with 80 non-overlapping observations, still provides a reasonable

sample size for approximating the theoretical asymptotic test statistic distribution.12 As a

second alternative, we calculate Hodrick (1992) standard errors using all overlapping obser-

vations. This approach explicitly accounts for the moving average structure that overlap

introduces into residuals. Third, we report Newey-West (1985) standard errors with twelve

lags to account for overlap-induced serial correlation among residuals. In our empirical anal-

ysis, results for all of these test statistics are very similar. Our exposition focuses on the

Kelly and Pruitt in-sample standard errors since our results show that these are typically

the most conservative.

PLS in-sample tests have no direct out-of-sample counterpart (this is also true of OLS).

Instead, we conduct out-of-sample inference with the “encompassing” forecast test ENC-

NEW derived by Clark and McCracken (2001). This statistic has become widely used in the

forecasting literature, and tests the null hypothesis that two predictors provide the same out-

of-sample forecasting performance. When we report this statistic, we are testing the denoted

predictor versus the historical mean of the target series.13 We report significance levels as

12We can similarly calculate Kelly and Pruitt standard errors using non-overlapping forecast errors corre-
sponding to any month January through December. We report the p-value for the median of 12 t-statistics
constructed for each of the possible year-end months, therefore covering every non-overlapping set of fore-
cast errors. In practice any choice of year-end month yields very similar statistics so that the median is
representative.

13This test compares our time τ forecast of the τ + 1 (τ + 12 for annual returns) realization against the
forecast based on the target variable’s mean estimated through time τ .
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found from Clark and McCracken’s (2001) appendix tables, where critical values for the 10%,

5% and 1% levels are provided. The notation “< x” represents the smallest significance

level x for which the encompassing test statistic exceeds the critical value. When evaluating

overlapping forecast errors (as we do for annual return, dividend growth and earnings growth

forecasts) we use Newey-West standard errors with twelve lags to consistently estimate the

appropriate asymptotic variance in the denominator of ENC-NEW, as suggested in Clark

and McCracken (2005). Out-of-sample results reported in tables are based on a 1980 sample

split, save for the international data which are split at 1995 owing to its much more recent

start date. As fore mentioned, we plot our-of-sample R2 over a wide range of alternative

split dates to demonstrate the robustness of our results to choice of sample split.

To evaluate forecasting fit, we calculate the predictive R2 = 1−
∑

t
(yt−ŷt)2∑
t
(yt−ȳ)2

, which for our

PLS forecasts is equal to the R2 of the third stage univariate regression. The out-of-sample

R2 lies in the range (−∞, 1], where a negative number means that a predictor provides a

less accurate forecast than the target’s historical mean.

III Empirical Results

III.A Data

Our empirical analysis examines market return and cash flow growth predictability by ap-

plying partial least squares to different cross sections of valuation ratios. The main three

are book-to-market ratios for Fama and French’s (1993) size and value-sorted portfolios (in

which U.S. stocks are divided into six, 25 or 100 portfolios).

Many authors, including Fama and MacBeth (1973), Miller and Scholes (1982), Fama and

French (1988) and Polk, Thompson and Vuolteenaho (2006), have highlighted the difficulties

in working noisy firm-level accounting variables (book values and cash flows). Fama and

MacBeth prescribe the use portfolios to reduce the impact of individual stock noise on our

information extraction, and this drives our focus on the cross section of portfolios rather
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Figure 1: Book-to-Market Ratios
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Notes: The figure shows year-end log book-to-market ratios from 1930-2009 for the aggregate U.S. stock
market, six size and value-sorted portfolios from Fama and French (1993) (available on Kenneth French’s
website), and the first and 99th percentile (each year) for individual U.S. stock book-to-market ratios (data
from CRSP and Compustat). NBER recession dates are represented by the shaded area.

than individuals stocks for our main analysis.14 However, we also analyze the robustness

of our main results to several other cross sections. One alternative we explore is indeed

the cross section of individual firm data, at which point we also discuss in more detail the

tradeoffs associated with portfolio data versus that of individual firms. We also consider

price-dividend ratios for size and value-sorted portfolios in place of book-to-market ratios.

Finally, we take our analysis to international data, using the country-level portfolio valuation

ratios of Fama and French (1998). Our focus is on the 1930-2009 sample for U.S. data. The

international sample is available only from 1975-2009. Individual stock data are from CRSP

and Compustat. U.S. and international portfolio data are from Kenneth French’s website.

Alternative predictors are obtained from data on Amit Goyal’s website.

14Our model implies that it is the similarity of the factor loadings (γ or δ) across firms in the same
portfolio that allow for the noise reduction with respect to forecasting market aggregates.
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Figure 1 plots book-to-market ratios of the aggregate U.S. stock market and six Fama-

French size and value-sorted portfolios in December of each year. It also shows the 1st

and 99th percentile of individual U.S. stock book-to-market ratios by year. Disaggregated

book-to-market ratios exhibit more variability than that of the market portfolio, with a

standard deviation of 0.53 on average across the six Fama-French portfolios, versus 0.42

for the market. The portfolio series as well as the individual stock percentiles show that

cross sectional dispersion among book-to-market ratios varies dramatically over time. The

interquartile range of stock-level log book-to-market ratios reaches its maximum of 1.8 during

the Great Depression, falls to 0.7 shortly after World War II, and rises again to 1.5 during

the technology boom of the late 1990s. Variation in ordering, dispersion, and comovement of

book-to-market ratios is the key predictive information that PLS exploits to measure market

expectations.

III.B Market Return Predictability

III.B.1 Forecasting with Portfolio Book-to-Market Ratios

Our main empirical analysis evaluates the predictability of aggregate market returns using

the cross section of book-to-market ratios. We directly estimate our model of the cross

section system described in Section I. This model emphasizes the low dimension predictive

structure underlying the many-predictor cross section, which motivates our estimation of

the model via PLS. Table I presents return forecasting results based on six, 25 and 100

book-to-market ratios of size and value-sorted portfolios of U.S. stocks (Fama and French

(1993)). We consider two different forecasting horizons – one month and one year – and

report findings for both in-sample and out-of-sample forecasts.

The left half of Table I shows that a single factor extracted via PLS demonstrates a

striking degree of predictability for one year returns. The in-sample implementation gener-

ates a predictive R2 reaching 25.0% and 32.9% based on 25 and 100 book-to-market ratios,

respectively (p < 0.001 in both cases). When only six portfolios are used, the in-sample
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Table I: Market Return Predictions (1930-2009)

One Year Forecasts One Month Forecasts
R2 (%) p (KP/CM) p (Hodrick) p (NW) R2 (%) p (KP/CM)

6 Portfolios
In-Sample 3.84 0.126 0.119 0.062 0.51 0.136
Out-of-Sample 5.85 < 0.050 - - 0.44 < 0.100

25 Portfolios
In-Sample 25.04 < 0.001 < 0.001 < 0.001 2.07 < 0.001
Out-of-Sample 9.79 < 0.010 - - 0.60 < 0.010

100 Portfolios
In-Sample 32.87 < 0.001 < 0.001 < 0.001 4.08 < 0.001
Out-of-Sample 9.88 < 0.010 - - 0.76 < 0.010

Notes: Results of PLS forecasts of one year and one month market returns. The sets of predictor variables
are six, 25 and 100 book-to-market ratios of size and value-sorted portfolios of U.S. stocks from Fama and
French (1993). In-sample results are for the 1930-2009 sample. Out-of-sample forecasts split the sample
in 1980, using the pre-1980 period as a training window, and recursively forecasting returns beginning in
January 1980 (results from a wide range of alternative sample splits are shown in Figure 3). We report
in-sample and out-of-sample forecasting regression R2 in percent. We also report p-values of three different
in-sample test statistics. The first is the asymptotic predictive loading t-statistic from Kelly and Pruitt
(2011), calculated on every non-overlapping set of residuals as described in the text. For annual returns we
also report Hodrick (1992) and Newey-West (1985) t-statistic p-values. For out-of-sample tests we report
Clark and McCracken’s (2001) ENC-NEW encompassing test statistic in italics with p-values from Clark
and McCracken’s (2001) appendix tables. This tests the null hypothesis of no forecast improvement over the
historical mean; for annual returns we follow Clark and McCracken (2005) and use Newey-West standard
errors with twelve lags to consistently estimate the appropriate asymptotic variance.

forecasting relation is only marginally significant (R2 = 3.84%, p = 0.126), highlighting the

information gains from using finer portfolio divisions. Out-of-sample PLS forecasts based on

portfolio book-to-market ratios are similarly powerful, delivering an R2 of 5.9%, 9.8% and

9.9% for six, 25 and 100 portfolios. These are large economic magnitudes for out-of-sample

prediction, comparable to in-sample results from commonly studied predictors such as the

aggregate price-dividend ratio. Each of these out-of-sample results are statistically signifi-

cant at least at the 5% level based on Clark-McCracken tests, and at the 1% level for finer

portfolio divisions.

The last two columns report forecasting results for one month returns. The monthly in-
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sample R2 reaches 2.1% and 4.1% based on a single linear combination of 25 or 100 portfolio

book-to-market ratios, respectively. Out-of-sample one month return forecasts are significant

at the 1% level or better for 25 and 100 portfolios, with an R2 reaching as high as 0.8%.

At the monthly frequency, an out-of-sample R2 of 0.8% has large economic significance. A

heuristic calculation suggested by Cochrane (1999) shows that the Sharpe ratio (s∗) earned

by an active investor exploiting predictive information (summarized by the regression R2)

and the Sharpe ratio (so) earned by a buy-and-hold investor are related by s∗ =
√

s2o+R2

1−R2 .

Campbell and Thompson (2008) estimate a monthly equity buy-and-hold Sharpe ratio of

0.108 using data back to 1871. Therefore, an out-of-sample predictive R2 of 0.8% implies

that an active investor exploiting our approach could achieve a Sharpe ratio improvement of

roughly 30% over a buy-and-hold investor, using only real-time information in the form of

portfolio book-to-market ratios.

How do our market return forecasts compare with predictors proposed in earlier litera-

ture? Table II compares predictive accuracy of our approach with an extensive collection of

alternative predictors that have been considered in the literature. In particular, we explore

forecasts from 16 predictors studied in a recent return predictability survey by Goyal and

Welch (2008). The table considers both in-sample and out-of-sample forecasts of market

returns over horizons of one year and one month from each regressor individually. Among

the alternatives, the best univariate forecasts at the annual horizon (Panel A) are achieved

by cay (Lettau and Ludvigson 2001), which delivers an in-sample R2 of 14.9% and an out-

of-sample R2 of 2.5%, showing statistically significant predictive power at the 1% level.15

Other successful out-of-sample predictors include the cross section premium (csp) of Polk,

Thompson and Vuolteenaho (2006), the term spread (tms), the long term government bond

return (ltr), and the aggregate log earnings-to-price ratio (ep). The first row of the column

shows that even the success of cay is dominated by the single PLS factor extracted from

15Specifically, this is the cayp variable which Goyal and Welch (2008) discuss at some length, analyzing
how the typical “out-of-sample” construction of the variable actually uses information from the full sample.
The highest frequency at which cay is available is quarterly, therefore we take each observation to represent
the quarter’s last month observation and treat the other months as missing.
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portfolio-level book-to-market ratios.

Table II also reports forecasting results using the first three principal components ex-

tracted from the cross section of 25 portfolio book-to-market ratios.16 Principal components

fail to demonstrate any significant return forecasting power in-sample or out-of-sample. In

the finance and economics literature, principal components (PC) has become the de facto

method of for condensing large cross sections of predictors into a small number of predic-

tive factors. PC suffers from an important shortcoming when it comes to forecasting: The

components that best describe variation among the predictors are not necessarily the factors

most useful for predicting next period’s aggregate return. PLS, on the other hand, extracts

predictive factors that are optimal for forecasting. If there is a common factor among the

predictors that is useful for forecasting returns, but that describes a relatively small amount

of the variation within the predictors (that is, it is a low ranking principal component), PC

can fail to detect that factor. PLS differs in that it only identifies forecast-relevant factors,

ignoring factors that may be pervasive among predictors but useless for forecasting. For

an in depth discussion of PLS versus PC forecast properties, we refer readers to Kelly and

Pruitt (2011).

Predictions of one month returns (Table II, Panel B) tell the same story as annual fore-

casts. Our procedure is the dominant in-sample univariate predictor (R2 = 4.1%, p < 0.001),

with only cay and the log earnings-price ratio (ep) as the other predictors with in-sample

forecasting power that is significant at least at the 5% level. Out-of-sample, only our pro-

cedure (R2 = 0.8%, p < 0.01) and the default rate (dfr) provide significant positive results,

but the latter’s in-sample predictive power is tiny and insignificant (p = 0.5). In summary,

our PLS factor derived from the cross section of book-to-market ratios is the only predictor

to exhibit significant performance both in-sample and out-of-sample for one month returns.

Estimates of the expected annual return based on our cross-sectional approach are plotted

in Figure 2, and are compared against estimates from regressions on aggregate valuation

16Principal components results are very similar when extracted from 100 portfolios.
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Table II: Market Return Predictions: Comparison with Common Alternative Predictors

Panel A: One Year Forecasts Panel B: One Month Forecasts
In-Sample Out-of-Sample In-Sample Out-of-Sample

R2 (%) p (Hodrick) p (NW) R2 (%) p (CM) R2 (%) p (NW) R2 (%) p (CM)

100 Ptfs 32.87 < 0.001 < 0.001 9.88 < 0.010 4.08 < 0.001 0.76 < 0.010

dfy 0.31 0.674 0.664 -0.13 - 0.05 0.778 -0.39 -
infl 0.00 0.853 0.747 -0.31 - 0.04 0.641 -0.14 -
svar 0.00 0.995 0.650 -0.13 - 0.09 0.654 -0.80 -
csp 0.36 0.401 0.492 1.29 < 0.050 0.61 0.043 -0.11 -
de 0.80 0.527 0.525 -5.59 - 0.09 0.574 -1.54 -
lty 0.79 0.351 0.279 -0.73 - 0.02 0.671 -0.87 -
tms 1.10 0.195 0.151 0.41 < 0.100 0.12 0.266 -0.20 -
tbl 0.16 0.680 0.661 -3.74 - 0.00 0.962 -1.03 -
dfr 0.00 0.553 0.614 -0.27 - 0.15 0.499 1.06 < 0.010
pd 3.57 0.090 0.062 -3.08 - 0.20 0.304 -7.44 -
dy 3.84 0.080 0.047 -6.31 - 0.32 0.200 -0.23 -
ltr 0.89 0.002 < 0.001 0.89 < 0.050 0.37 0.067 -5.16 -
ep 8.04 < 0.001 < 0.001 1.35 < 0.010 0.47 0.044 -3.48 -
bm 9.99 0.002 < 0.001 -18.67 - 0.81 0.096 -3.58 -
ntis 8.19 0.081 0.071 -56.44 - 0.52 0.110 -2.13 -
cay 14.93 0.004 < 0.001 2.48 < 0.010 1.59 0.009 -2.32 -
pc1 1.96 0.182 0.115 -2.19 - 0.16 0.204 -0.62 -
pc2 0.08 0.811 0.790 -0.32 - 0.00 0.857 -0.03 -
pc3 0.02 0.960 0.882 -0.55 - 0.03 0.764 0.00 -

Notes: Results of PLS forecasts of one year and one month market returns from 100 book-to-market ratios of size and value-sorted portfolios of U.S. stocks from Fama and
French (1993); and results for alternative predictors taken from Goyal and Welch (2008) with data updated through 2009. These alternative predictors are the default yield
spread (dfy), the inflation rate (infl), stock variance (svar), the cross-section premium (csp), the dividend payout ratio (de), the long term yield (lty), the term spread (tms), the
T-bill rate (tbl), the default return spread (dfr), the price-dividend ratio (pd), the dividend yield (dy), the long term rate of returns (ltr), the earning price ratio (ep), the book to
market ratio (bm), the investment to capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the ex post consumption-wealth-income
ratio (cay) which Goyal and Welch refer to as “cayp.” Additionally we consider the first three principal components extracted from the 25 portfolio book-to-market ratios and
find no significant improvement when all three predictors are used together. In-sample results are for the 1930-2009 sample wherever possible. Out-of-sample forecasts split
the sample in 1980, using the pre-1980 period as a training window, and recursively forecasting returns beginning in January 1980 (results from a wide range of alternative
sample splits are shown in Figure 3). We report in-sample and out-of-sample forecasting regression R2 in percent. We also report p-values of two different in-sample test
statistics: Hodrick (1992) and Newey-West (1985) t-statistic p-values. For monthly returns, the Newey-West standard error is identical to the White robust standard error.
For out-of-sample tests we report Clark and McCracken’s (2001) ENC-NEW encompassing test statistic in italics with p-values from Clark and McCracken’s (2001) appendix
tables. This tests the null hypothesis of no forecast improvement over the historical mean; for annual returns we use Newey-West standard errors with twelve lags to consistently
estimate the appropriate asymptotic variance in the denominator of ENC-NEW, as suggested in Clark and McCracken (2005).
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Figure 2: Market Return Predictions
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Notes: The figure shows year-end realized returns for the aggregate U.S. stock market (Realized), both in-sample and out-
of-sample forecasts from our PLS factor extracted from 25 book-to-market ratios of size and value-sorted portfolios of U.S.
stocks from Fama and French (1993) (25 Fama-French Portfolio BMs In-Sample/Out-of-Sample), and in-sample forecasts from
predictive regressions on the aggregate book-to-market (bm In-Sample) and aggregate price-dividend (pd In-Sample) ratios.
NBER recession dates are represented by the shaded area.

ratios.17 Our estimated one-year-ahead expected return process differs from other estimates

in qualitatively important ways. Table III presents the volatility and persistence of expected

market returns estimated from predictive regressions based on the aggregate market book-

to-market ratio, compared to estimates based on a single PLS factor extracted from the cross

section of 25 portfolio book-to-market ratios. Our estimates suggest that expected returns

are nearly twice as volatile as previously estimated. We find expected return volatility of

10.8% at the annual frequency based on in-sample estimates, suggesting that about half of

the annual variation in stock market value during this period is attributable to fluctuations

in investor expectations. Examining the 1955-2009 subsample allows us to compare with

out-of-sample estimates from our approach. During this period we see that in-sample and

17Though we have these predictions monthly, we plot them at an annual frequency to make the figure easy
to read.
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Table III: Volatility and Autocorrelation of Expected Market Return Esti-
mates

1930-2009 1955-2009

Vol (%) AC(1) Vol (%) AC(1)

Realized Returns 20.2 0.032 17.5 -0.113

Aggregate Price-Dividend 4.0 0.889 5.1 0.908

Aggregate Book-to-Market 6.5 0.839 3.9 0.912

25 Portfolios (in-sample) 10.8 0.332 6.7 0.445

25 Portfolios (out-of-sample) - - 6.9 0.199

Notes: Volatility (standard deviation) and first-order autocorrelations for realized aggregate U.S. stock
market annual returns, and expected annual returns estimated using the aggregate price-dividend ratio
in-sample, the aggregate book-to-market ratio in-sample or our PLS factor extracted either in-sample or
out-of-sample from 25 book-to-market ratios of size and value-sorted portfolios of U.S. stocks from Fama
and French (1993). Out-of-sample expected returns begin only in 1955.

out-of-sample expected return estimates have similar volatility, nearly 7% per annum, which

is about 80% higher than in-sample estimates based on aggregate value ratio and accounts

for about 40% of annual stock market variation.

Our estimates also show that one-year-ahead expected returns mean revert more quickly

than previously believed. We find an autocorrelation between 0.199 and 0.445 at the annual

frequency, compared to aggregate value ratios that imply a persistence of 0.912. In light

of the volatility and lack of serial correlation in realized returns, higher volatility and lower

persistence of our one-year-ahead expected returns contribute to return forecasts that are

substantially more accurate than alternative forecasts. The close agreement across in-sample

and out-of-sample estimates imply that this conclusion is a genuine feature of market prices

rather than an artifact of statistical overfit. Our results point to market expectation dy-

namics that are quite different than the persistent expected returns generated by standard

consumption-based asset pricing paradigms such as habit persistence or long run risks, mod-

els that are typically calibrated to match the much weaker empirical return predictability

generated by the aggregate price-dividend ratio.
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Figure 3: Out-of-Sample R2 by Sample Split Date, One Year Returns
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Notes: Out-of-sample R2 by varying sample split date. For forecasts of one year market returns from: a single PLS factor
from 25 book-to-market ratios of size and value-sorted portfolios of U.S. stocks from Fama and French (1993); the aggregate
price-dividend ratio; and alternative predictors taken from Goyal and Welch (2008) – the cross-section premium (csp) and the
ex post consumption-wealth-income ratio (cay); and the first principal component extracted from the 25 Fama-French portfolio
book-to-market ratios (pc1)

III.B.2 Varying Out-of-Sample Sample Splits

Our first robustness check recognizes the following: We have reported out-of-sample fore-

casting tests based on a 1980 sample-split date, but recent forecast literature suggests that

sample splits themselves can be data-mined (cf. Hansen and Timmermann (2011) and Inoue

and Rossi (2011)). To demonstrate the robustness of out-of-sample forecasts to alterna-

tive sample splits, Figure 3 plots out-of-sample annual return predictive R2 as a function

of sample-split date for a variety of predictors. The earliest sample split we consider is

January 1955, which uses less than one third of the data (25 out of 80 years) as a training

sample. The latest split we consider is 1995, which uses a long training sample and limited

test sample. The figure shows our procedure consistently outperforms alternative predictors

across sample splits. Note that the aggregate book-to-market ratio is not shown since its
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out-of-sample R2 consistently falls below -10%. Forecasts using cay are competitive in only

a small subset of the sample splits. The first principal component (“pc1” in the figure) has

consistently poor out-of-sample performance, as do forecasts that use the first three prin-

cipal components simultaneously (not shown due to close similarity with results from the

first principal component). The remaining predictors fail to consistently demonstrate out-of-

sample predictability across various split dates. An attractive feature of our estimator is that

its out-of-sample R2 shows a gradual, steady increase as the training sample expands. This

suggests that PLS successfully learns from new information being fed into the procedure as

more data becomes available, allowing it to more effectively counteract sample noise.

III.B.3 Subsample Cross-Validation

We next evaluate the robustness of our results to the alternative out-of-sample forecast

procedure of cross-validation. The attractiveness of our benchmark recursive out-of-sample

procedure is that it strictly relies only on information available to analysts in real time. One

limitation of this test is that it always trains on an early portion of the sample and tests

on a later portion. If there are differences in predictability between early and late in the

sample, this can be missed by the recursive, forward looking approach. Cross-validation

breaks this strict timing: Training samples need not contain the earliest observations and

the test sample need not be restricted to latter portions of the data.18 Hence cross-validation

is an out-of-sample procedure that does not require temporal ordering of training and test

samples. Therefore, it allows us to measure the out-of-sample performance of our forecasts

for every period of our entire sample, while still requiring that model parameter estimates

are not based on data in the left-out sample.

We begin by partitioning the data into T subsamples of lengthK months. For the subsam-

ple indexed by date t, we perform the full three-pass PLS procedure using all data except

that for periods t through t + K. Parameter estimates are based on the training sample

18Stock and Watson (2011) advocate cross-validation in the context of macroeconomic forecasting by a
similar rationale and use a similar scheme.
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Table IV: Cross-Validation Out-of-Sample R2

Number of Years Left-Out

1 2 3 5 10

6 Portfolios CV R2 -4.71 -2.91 -2.43 -3.48 -2.99

25 Portfolios CV R2 4.85 6.62 7.19 4.63 2.33

100 Portfolios CV R2 3.74 4.72 5.67 6.67 11.14

Notes: R2 for annual returns from an alternative out-of-sample procedure: Leave-K-out cross-validation,
where K is twelve times the number of years dropped. Results from PLS forecasts of one year market returns
from six, 25 or 100 book-to-market ratios of size and value-sorted portfolios of U.S. stocks from Fama and
French (1993). The procedure is described in more detail in the text. It differs from our main (recursive)
out-of-sample results in that the training sample can include observations both temporally before and after
the left-out sample.

{1, ..., t− 1, t+K + 1, ..., T}, including weights in the PLS factor construction and the final

stage predictive coefficient.19 These parameters estimates are then used to construct the

PLS factor and forecast the annual return realized in period t + 12.20 This is repeated for

each subsample, and hence out-of-sample forecast errors for all t = 1, ..., T are aggregated to

calculate a cross-validation R2, denoted CV R2 and reported in Table IV.21 For all subsam-

ple window lengths, our single PLS factor forecasts from 25 and 100 portfolios produces a

positive cross-validation R2.22 This sensitivity analysis suggests that our main out-of-sample

predictability results are representative of the behavior of value ratios and market returns

across various subsamples of the entire sample period.

19There are slight but obvious modifications required near the endpoints as t gets within K periods of
the beginning or end of our sample. For example the forecast for observation 1 has {t+K + 1, ..., T } as its
training sample, as clearly there is no data available prior to observation 1.

20That the first forecast occurs at t+12 reflects care taken to ensure that no information from the testing
window is used in parameter estimation. This accounts for overlapping monthly observations of annual
returns, as discussed in Section II.C.

21This procedure produces a unique forecast error for each data point. We use the calculation CV R2 =

1 −
∑

t
(yt−ŷt)

2

∑
t
(yt−ȳ)2 , where ȳ is mean return in the training sample corresponding to forecast ŷt. As in the

recursive case, this R2 has the interpretation of measuring out-of-sample predictive power relative to that of
the training sample mean return.

22Statistical tests for cross-validation are not well-known in the economics forecasting literature. A natural
alternative for such a test is the Clark and McCracken’s (2001) statistic developed for recursive forecasting.
Treating this as a cross-validation test, we find that out-of-sample forecasts from 25 and 100 portfolios are
statistically significant at the 5% level or better in all cases.
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III.B.4 Forecasting From Individual Stock Valuation Ratios

We next investigate the usefulness of information in individual stock valuation ratios for pre-

dicting market returns. We tackle the formidable task of applying our simple PLS forecasting

approach directly to stock-level valuation ratios of all CRSP stocks from 1930-2009.

Polk, Thompson and Vuolteenaho (2006) is the benchmark study for combining individual

firm data into a market return prediction. Their paper emphasizes the difficulty in working

with noisy firm-level data, such as book value or cash flows, which may distort valuation ra-

tios and complicate extraction of market expectations from the cross section. They address

this with a series of pre-filtering adjustments to firms’ valuation ratios and robust statis-

tics. These include relying on ordinal ranks rather than cardinal values, value-weighting

observations, and censoring extreme observations.

One alternative solution to this problem, as suggested by Fama and MacBeth (1973) and

done in our main analysis above, is to combine individual stocks into portfolios. In this

section, we are interested in drilling deeper to understand how much we can learn about

aggregate market expectations directly from individual stock data.

To this end, we take another approach to dealing with noise in individual stock valuation

ratios that was originally proposed in Miller and Scholes (1982) and Fama and French (1988).

Those authors suggest that, rather than using infrequent and potentially mis-measured bal-

ance sheet data, it may be beneficial to omit fundamentals information entirely and focus

only on the price portion of the valuation ratio. We conduct our main individual stock analy-

sis taking this approach. To achieve stationarity in the ratio, we divide the firm’s month-end

share price by the moving average price over the previous three years. As in our book-to-

market calculation, we then take the log of this ratio as our definition of vi,t in system (6).

We call this the individual stock price-to-moving-average (PMA) ratio. Individual stock

data comprises a severely unbalanced panel. To address this, as well as potential parameter

instability at the stock level, we estimate the model using a rolling five-year estimation win-

dow, and only include stocks in each period’s forecast if they have no missing observations
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in this window.

We focus on monthly returns to directly compare with the benchmark of Polk et al., who

study monthly forecasts. Figure 4 reports the out-of-sample monthly return forecasting R2

from individual stock PMA ratios across a range of sample splits. It also plots the R2 for

Polk et al.’s csp variable. Our single PLS factor extracted from the cross section of individual

stock PMA ratios consistently produces a positive out-of-sample R2, rising above 1% in the

mid-1960s and exceeding 2% per month by the mid-1980s. It uniformly dominates csp, as

well as forecasts from cay and the first component of 25 Fama-French portfolios’ book-to-

market ratios.23 For comparison, we also plot results from the PLS factor extracted from 25

portfolio book-to-market ratios.

The results of the same forecasting analysis using a single PLS factor extracted from

individual stock book-to-market ratios are also plotted in Figure 4. For small training

samples these forecasts produce a negative R2, presumably due to the noisiness of firm-level

balance sheet data. In early sample splits the book-to-market ratios are not only dominated

by forecasts based solely on firm-level prices, but also by csp, whose clever modifications

mitigate the influence of noise in firm-level valuation ratios using balance sheet data. Just

as in Figure 3, the individual stock book-to-market ratio R2 series trends upwards as the

training window expands. Across sample splits, not only is more time series data being used

to train the procedure, but also the number of available individual stocks is increasing. Figure

4 shows (on the right-hand scale) that the number of stocks grows steadily from around 800

in 1955 to around 3600 in 1995. The R2 for the PLS factor of firm-level book-to-market ratios

increases more rapidly than other forecasters as the training sample is expands, suggesting

that PLS forecasts learn relatively quickly as firms’ book-to-market ratios become available

and parameter estimates sharpen, rapidly overcoming the initial noise-induced R2 deficit. By

the mid-1980s the raw book-to-market R2 series intersects that of csp and begins to provide

better forecasts. However, it never reaches the high degree of predictability demonstrated

23Extracting PCs from the cross section of individual stock value ratios led to poorer results and so is not
shown.
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Figure 4: Out-of-Sample R2 by Sample Split Date, One Month Returns
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Notes: Out-of-sample R2 by varying sample split date, given on the left scale. For forecasts of one month market returns
from: a single PLS factor from the entire cross section of U.S. stocks’ price-to-moving-average ratios (Individual Stock PMA)
or book-to-market ratios (Individual Stock BM); a single PLS factor from 25 book-to-market ratios of size and value-sorted
portfolios of U.S. stocks from Fama and French (1993) (25 Fama-French Portfolio BMs); and alternative predictors taken from
Goyal and Welch (2008) – the cross-section premium (csp) and the ex post consumption-wealth-income ratio (cay); and the
first principal component extracted from the 25 portfolio book-to-market ratios (pc1). The number of stocks available in the
cross-section is given on the right scale.

by our PLS approach applied to the cross section of firm-level valuation ratios constructed

solely from stock prices. These results also join Polk et al. in highlighting the difficulty of

working with noisy firm-level data.

III.B.5 Forecasting with Price-Dividend Ratios

As another robustness check, we consider the ability of a cross section of alternative valuation

ratios to forecast market returns. In Section I, we note that the Campbell and Shiller

(1988) present value identity produces a factor model for the cross section of log price-

dividend ratios in direct analogy with Equation 6 under similar assumptions. Thus far,

our analysis has focused on book-to-market ratios to avoid the lack of dividend payments
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(and hence undefined price-dividend ratios) for a substantial fraction of U.S. firms.24 While

concerns about declining numbers of dividend-paying firms are partly mitigated by portfolio

aggregation, in many cases portfolios can be dominated by non-dividend payers, resulting in

an erratic and highly inflated price-dividend ratio for that portfolio.25 In order to develop

well-behaved portfolio price-dividend ratios, we form our own sets of six, 25 and 100 portfolios

on the basis of underlying firms’ market equity and book-to-market ratio, with the key

difference that we exclude non-dividend paying firms. When forming portfolios, we only

assign a stock to a portfolio in month t if at paid positive dividends in the twelve months

prior to t.26 This greatly increases the fraction of firms in our portfolios with well-defined

price-dividend ratios, while continuing to condition portfolio formation only on past publicly

available information. We refer to this sample as “past dividend payers.” Dividend paying

behavior is highly persistent among U.S. firms, so that a firm having paid dividends in the

past twelve months strongly predicts that it will pay dividends in the subsequent twelve

months.

Market return forecasts based on a single PLS factor extracted from the cross section

of portfolio price-dividend ratios demonstrates strong predictive accuracy, on par with our

results using book-to-market ratios. In-sample annual return R2 numbers for six, 25 and 100

portfolios are 8.3%, 10.6% and 33.9%, and Kelly-Pruitt, Hodrick and Newey-West t-statistics

are all significant at least at the 0.1% level. Out-of-sample R2’s are 13.7%, 4.8% and 9.6%

respectively, all significant at least at the 1% level according to the Clark-McCracken test.

The out-of-sample R2 from 25 price-dividend ratios across various split dates behaves very

similarly to those shown for 25 book-to-market ratios in Figure 3.

24The fraction of firms that paid dividends in 1946, 1980 and 2008 was 86%, 64% and 36%, though these
fractions are substantially higher, 97%, 93% and 76%, when weighted by market capitalization.

25An earlier draft of this paper documents this behavior in detail. These results are available upon request.
26We use simultaneous two-way sorts, rebalance portfolios monthly, and most importantly, strictly preclude

look-ahead information in portfolio construction, as is the case in the original Fama and French (1993)
portfolios.
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III.B.6 Forecasting Outside the U.S.

Our last robustness check asks whether our return predictability results hold internationally.

To do so, we forecast returns on the value-weighted aggregate world portfolio (excluding

the U.S.) by applying PLS to an international cross section of non-U.S., country-level val-

uation ratios. Monthly data for country-level portfolios are available from Ken French’s

website beginning in 1975, following the construction described in Fama and French (1998).

This sample, based on data from MSCI, sorts equities from each country into a high value

and low value portfolio. Countries covered in the sample are Austria, Australia, Belgium,

Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Italy, Japan, Malaysia,

Netherlands, Norway, New Zealand, Singapore, Spain, Sweden, Switzerland and UK. We use

cum- and ex-dividend returns on these portfolios to calculate price-dividend ratios of the two

portfolios in each country, resulting in a cross section of 40 portfolios price-dividend ratios.27

This cross section is used to forecast the return on an international equity index (exclud-

ing the U.S.), which is a value-weighted portfolio of country-level index returns in these 21

countries (portfolio weights are determined by a country’s weight in the MSCI EAFE index).

Because the data begin in 1975, we consider only monthly returns and take 1995 to be our

out-of-sample split date.

We find that the world equity index return is highly predictable by country-level value

ratios. The monthly out-of-sample R2 is 2.3%, for which Clark and McCracken’s (2001) test

statistic is significant at least at the 1% level. Figure 5 shows that this strong out-of-sample

performance is robust to a wide range of sample splits, and gradually increases with the

length of the training sample as in the U.S. data. In-sample analysis produces an R2 of 5.3%

27French’s data includes price and dividend data at the monthly frequency, and aggregate country book-
to-market ratios at the annual frequency. Because the sample begins, at the earliest, in 1975 (some countries
have an even shorter sample), for meaningful out-of-sample analysis we conduct our forecasting analysis at
the monthly frequency and therefore rely on price-dividend ratios rather than book-to-market ratios as our
predictors. A comparison of annual price-dividend and book-to-market ratios suggests that the two series
are highly similar at the country level. The median correlation between the two ratios is 86% (mean of 78%)
across the 21 countries we study. In-sample forecasts of non-overlapping annual returns based on country-
level book-to-market ratios generates an R2 of 8.2%, versus an R2 of 9.8% using price-dividend ratio data
at the same frequency.
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Figure 5: Out-of-Sample R2 by Sample Split Data, One Month International
Returns
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Notes: Out-of-sample R2 by varying sample split date. For forecasts of one month international stock returns from a single PLS
factor from 42 book-to-market ratios of high- and low-value portfolios for 21 countries stocks from Fama and French (1998).
See Section III.B.6 for the list of countries.

with a Kelly-Pruitt t-stat significant at least at the 0.1% level. The success of a single PLS

factor drawn from the cross section of value ratios in an international sample lends further

confidence to the robustness of our findings.

III.C Cash Flow Growth Predictions

Thus far we have focused on forecasts of aggregate market returns. Asset prices depend not

only on discount rates, but also on expectations about assets’ future cash flows. Hence it is

important for our understanding of asset pricing to also investigate how much information

valuation ratios contain about the market’s expectations of future cash flow growth. The

Vuolteenaho identity incorporates cash flow growth in terms of return on equity, while the

Campbell-Shiller identity depends on dividend growth. Our analysis focuses on forecasting

dividend growth and earnings growth, since these quantities have been at the center of growth

forecasting in the asset pricing literature (see Ball and Watts (1972), Campbell and Shiller

(1988), Cochrane (1992), Fama and French (2000), Lettau and Ludvigson (2005), Koijen

and Van Nieuwerburgh (2010), and Lacerda and Santa-Clara (2010)).
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Aggregate dividend growth is calculated from the universe of CRSP stocks and aggregate

earnings growth data is calculated from Standard and Poor’s data on Robert Shiller’s website.

Our analysis focuses on annual cash flow growth data in order to avoid spurious predictability

arising from well-known within-year cash flow seasonality. Table V reports results from our

PLS approach to forecasting annual aggregate U.S. dividend or earnings growth based on

six, 25 and 100 Fama-French portfolio book-to-market ratios. Across all portfolio sorts and

cash flow measures, the in-sample and out-of-sample results are positive and statistically

significant. For dividend growth, the in-sample R2 is between 21% and 44%, with an out-

of-sample R2 between 6% and 25%. Earnings growth forecast produce an in-sample R2

between 9% and 29% with an out-of-sample R2 around 3%.28 Figure 6 plots the out-of-

sample R2 for dividend growth forecasts, comparing our procedure to forecasts based on

the aggregate book-to-market ratio and the first principal component extracted from the

cross section of book-to-market ratios. As we showed with returns, the strong out-of-sample

predictive results from our procedure are robust across sample split and dominate aggregate

value ratios and principal components. Figure 7 plots the in-sample and out-of-sample

fitted dividend growth series alongside fits from aggregate valuation ratios. Not only do

in-sample PLS estimates suggest a much more volatile series for conditional expected annual

dividend growth, this is true out-of-sample as well, whose fits are nearly identical to in-sample

estimates.

Only recently have more sophisticated econometric approaches begun to identify pre-

dictability in aggregate dividend growth, as in van Binsbergen and Koijen (2010). The cross

section of book-to-market ratios identifies similarly large dividend growth forecastability,

and we document the robustness of this fact out-of-sample. We also document new evidence

of robust predictability in aggregate U.S. earning growth.

28Our annual dividend growth series is calculated assuming interim dividend payments are reinvested at
the risk free rate. Alternative strategies that reinvest in the market portfolio convolute market return and
dividend growth dynamics. We refer readers to Koijen and Van Nieuwerburgh (2010) for a detailed discussion
of this point.
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Table V: Market Cash Flow Predictions (1930-2009)

R2 (%) p (KP/CM) p (Hodrick) p (NW)

Panel A: Dividend Growth

6 Portfolios
In-Sample 21.12 0.002 0.002 < 0.001
Out-of-Sample 25.44 < 0.010 - -

25 Portfolios
In-Sample 20.58 0.005 0.002 0.001
Out-of-Sample 19.53 < 0.010 - -

100 Portfolios
In-Sample 44.29 < 0.001 < 0.001 < 0.001
Out-of-Sample 6.13 < 0.010 - -

Panel B: Earnings Growth

6 Portfolios
In-Sample 8.68 0.002 < 0.001 < 0.001
Out-of-Sample 2.76 < 0.100 - -

25 Portfolios
In-Sample 11.98 < 0.001 < 0.001 < 0.001
Out-of-Sample 2.63 < 0.050 - -

100 Portfolios
In-Sample 28.88 < 0.001 < 0.001 < 0.001
Out-of-Sample 3.49 < 0.050 - -

Notes: Results of PLS forecasts of one year aggregate dividend or earnings growth for the U.S. stock market.
The sets of predictor variables are six, 25 and 100 book-to-market ratios of size and value-sorted portfolios
of U.S. stocks from Fama and French (1993). In-sample results are for the 1930-2009 sample. Out-of-
sample forecasts split the sample in 1980, using the pre-1980 period as a training window, and recursively
forecasting returns beginning in January 1980 (results from a wide range of alternative sample splits are
shown in Figure 3). We report in-sample and out-of-sample forecasting regression R2 in percent. We also
report p-values of three different in-sample test statistics. The first is the asymptotic predictive loading
t-statistic from Kelly and Pruitt (2011), calculated on every non-overlapping set of residuals as described in
the text, and also Hodrick (1992) and Newey-West (1985) t-statistic p-values. For out-of-sample tests we
report Clark and McCracken’s (2001) ENC-NEW encompassing test statistic in italics with p-values from
Clark and McCracken’s (2001) appendix tables, testing the null hypothesis of no forecast improvement over
the historical mean and following Clark and McCracken (2005) in using Newey-West standard errors with
twelve lags to consistently estimate the appropriate asymptotic variance.
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Figure 6: Out-of-Sample R2 by Sample Split Data, Annual Dividend Growth
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Notes: Out-of-sample R2 by varying sample split date. For forecasts of annual aggregate dividend growth from a single PLS
factor from 25 book-to-market ratios of size and value-sorted portfolios of U.S. stocks from Fama and French (1993) (25 Fama-
French Portfolio BMs). We also plot results from forecasts based on the aggregate book-to-market ratio (bm) and the first
principal component extracted from the 25 portfolio book-to-market ratios (pc1).

IV Conclusion

We derive a dynamic latent factor model representation for the cross section of asset val-

uation ratios. The same factors that drive these present values also determine aggregate

expectations of market returns and cash flow growth, enabling us to make use rich cross-

sectional information in constructing forecasts. To analyze these latent processes, we use

the method of partial least square and recent econometric results on its behavior in factor

model settings. By extracting information from disaggregate valuation ratios we are able

to construct remarkably accurate forecasts of returns and cash flow growth rates both in-

sample and out-of-sample. The resulting estimates reveal important facets of the time series

of expected returns and cash flow growth that may be used to guide future models of cash

flows and discount rates. In particular, market expectations are much more volatile and less
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Figure 7: Dividend Growth Predictions
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in-sample forecasts from predictive regressions on the aggregate book-to-market (bm IS) and aggregate price-dividend (pd IS)
ratios. NBER recession dates are represented by the shaded area.

autocorrelated than previous results showed. Our results are robust across a variety of cross

sections, out-of-sample procedures and hold in both U.S. and international data. The cross

section of valuation ratios, as present value identities imply, hold a wealth of information

about investor expectations. A deeper understanding of economic fundamentals that drive

these valuation ratios is a promising avenue for future research.
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A Appendix

A.A Derivation of Present Value System

vi,t =
κi

1− ρi
+

∞
∑

j=0

ρ
j
i (−ri,t+j+1 +∆cfi,t+j+1)

=
κi

1− ρi
+

∞
∑

j=0

ρ
j
iEt(−µi,t+j + gi,t+j)

=
κi

1− ρi
+

∞
∑

j=0

ρ
j
iEt

[

−(γi,0 + γ′
iF t+j) + (δi,0 + δ′

iF t+j) + εi,t+j

]

=
κi − γi,0 + δi,0

1− ρi
+

∞
∑

j=0

ρ
j
i

(

Et[ι
′Υ′

iF t+j + εi,t+j ]
)

=
κi − γi,0 + δi,0

1− ρi
+

∞
∑

j=0

ρ
j
i ιΥ

′
iΛ

j
1F t + εi,t

=
1

1− ρi
(κi − γi,0 + δi,0) + ι′Υ′

i (I − ρiΛ1)
−1

F t + εi,t

= φi,0 + φ′
iF t + εi,t

where we have defined Υi = (γi, δi), ι = (−1, 1)′, φ′
i = ι′Υ′

i (I − ρiΛ1)
−1, and φi,0 = 1

1−ρi

(κi − γi,0 + δi,0).

A.B Partial Least Squares Assumptions

We adapt the assumptions of Kelly and Pruitt (2011) for their analysis of the three-pass regression filter,
a generalization of partial least squares. That paper has extensive discussion of the assumptions: Suffice
it to say that they are adequately weak and are satisfied by our model here. There is a final condition in
that paper that is trivially satisfied by our application because we use the forecast target itself as our proxy
variable in the first-pass regressions.

Assumption 1 (Factor Structure). The data are generated by the following:

vt = φ0 +ΦF t + εt yt+h = β0 + β′F t + ηt+h

V = ιφ′
0 + FΦ′ + ε y = ιβ0 + Fβ + η

where F t = (f ′
t, g

′
t)

′, Φ = (Φf ,Φg), and β = (β′
f ,0

′)′ with |βf | > 0. Kf > 0 is the dimension of vector f t,
Kg ≥ 0 is the dimension of vector gt, and K = Kf +Kg.

Assumption 2 (Factors, Loadings and Residuals). Let M < ∞. For any i, s, t

1. E‖F t‖
4 < M , T−1

∑T
s=1 F s

p
−−−−→
T→∞

µ and T−1F ′JTF
p

−−−−→
T→∞

∆F

2. E‖φi‖
4 ≤ M , N−1

∑N
j=1 φj

p
−−−−→
T→∞

φ̄, N−1Φ′JNΦ
p

−−−−→
N→∞

P and N−1Φ′JNφ0
p

−−−−→
N→∞

P 1
29

3. E(εit) = 0,E|εit|8 ≤ M

4. E (ωt) = 0,E||ωt||4 ≤ M,T−1/2
∑T

s=1 ωs = Op(1) and T−1ω′JTω
p

−−−−→
N→∞

∆ω

5. Et(ηt+h) = E(ηt+h|yt, Ft, yt−1, Ft−1, ...) = 0, E(η2t+h) = δη < ∞ for any h > 0, and ηt is independent
of φi(m) and εi,s.

29‖φi‖ ≤ M can replace E‖φi‖
4 ≤ M if φi is non-stochastic.
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Assumption 3 (Dependence). Let x(m) denote the mth element of x. For M < ∞ and any i, j, t, s,m1,m2

1. E(εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij and |σij,ts| ≤ τts, and

(a) N−1
∑N

i,j=1 σ̄ij ≤ M

(b) T−1
∑T

t,s=1 τts ≤ M

(c) N−1
∑

i,s |σii,ts| ≤ M

(d) N−1T−1
∑

i,j,t,s |σij,ts| ≤ M

2. E

∣

∣

∣
N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεit − E (εisεit)]

∣

∣

∣

2

≤ M

3. E

∣

∣

∣
T−1/2

∑T
t=1 Ft(m1)ωt(m2)

∣

∣

∣

2

≤ M

4. E

∣

∣

∣
T−1/2

∑T
t=1 ωt(m1)εit

∣

∣

∣

2

≤ M .

Assumption 4 (Central Limit Theorems). For any i, t

1. N−1/2
∑N

i=1 φiεit
d
−→ N (0,ΓΦε), where ΓΦε = plimN→∞N−1

∑N
i,j=1 E

[

φiφ
′
jεitεjt

]

2. T−1/2
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t=1 F tηt+h
d
−→ N (0,ΓFη), where ΓFη = plimT→∞T−1

∑T
t=1 E

[

η2t+hF tF
′
t

]

> 0
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t=1 F tεit
d
−→ N (0,ΓFε,i), where ΓFε,i = plimT→∞T−1

∑T
t,s=1 E

[

F tF
′
sεitεis

]

> 0.

Assumption 5 (Normalization). P = I, P 1 = 0 and ∆F is diagonal, positive definite, and each diagonal
element is unique.
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