An Equilibrium Model of Institutional Demand and Asset Prices

Ralph S.J. Koijen, Ph.D., New York University Stern School of Business, CEPR and NBER, and Motohiro Yogo, Ph.D., Princeton University and NBER

Overview

While demand curves are an important part of economic theory, they have not played a large role in empirical asset pricing which has focused directly on prices and returns. Due largely to the empirical difficulty in estimating demand for financial securities, the finance literature has instead abstracted from the demands that drive prices. In this paper, the authors take up this ambitious and challenging task using a well-crafted model to tie price movements to demanded quantities (shares) in order to better understand asset market movements, volatility, and predictability. The authors develop a framework used extensively in industrial organization to model demand for U.S. stocks across different investors. They then use this model to back out expected return estimates that can help explain the role institutions play in driving asset price changes.

Investigation

Traditional asset pricing models make restrictive assumptions about investors’ demand. All investors have essentially the same preferences, beliefs, and constraints. Also, they are all price takers and as such have no price impact. The authors’ contribution is to develop a new factor-based asset pricing model that allows for investor heterogeneity and that matches asset prices with institutional holdings.

Merging data from quarterly SEC Form 13F institutional filings with CRSP-Compustat from 1980 to 2015, the authors model portfolio choice across six investor types (banks, investment advisors, pension funds, insurance companies, mutual funds, and households) as a function of five stock characteristics or factors identified in prior research (market beta, book equity, profitability, investment, and dividends to book equity) plus a structural error (latent demand). The authors illustrate estimating the demand system through several asset pricing applications:

- Estimate the price impact of demand shocks for all institutions and stocks. They find that the price impact for typical institutions has meaningfully decreased from 1980 to 2014. For example, for a typical investment advisor with a 10 percent demand shock for illiquid stocks, their impact has decreased by 30% (from 0.87 percent in 1980 to 0.25 percent in 2014).

- Separately estimate supply-side (i.e., changes in shares outstanding, changes in characteristics) and demand-side (i.e., changes in assets under management, loadings on characteristics) effects. The authors find that stock returns are mostly explained by latent demand shocks, not by changes in shares outstanding or changes in stock characteristics.

- Examine to what extent large institutions explain the stock market volatility experienced in 2008. They discover that the largest 25 institutions, which together account for one-third of the stock market, explain only 6 percent of the cross sectional volatility of stock returns. Smaller institutions, which also account for one-third of the market, however, explain 42 percent of cross sectional volatility. Interestingly, households which account for the remaining one-third of the market, explain 48 percent of volatility. The relatively low contribution of large institutional investors likely reflects their long-term, diversified holdings of more liquid stocks.

- Use the factor-based model to estimate expected returns for individual stocks. Results here are largely consistent with extant research — high expected-return stocks tend to be small-cap value stocks.

The model the authors develop could be used to answer additional important questions related to the role of institutions in asset markets, yet would be difficult to answer with traditional regression, or event-based approaches. They suggest such applications could include answering regulatory questions like: How would a regulatory proposal, say bank reform, affect asset prices and real investment, or how might quantitative easing impact fixed income markets? It could also be used to answer questions about asset pricing such as: Which investor groups drive anomalous stock returns identified in academic research?

Conclusions

The authors focus on developing an equilibrium model of institutional demand and asset prices. They use a well-crafted model to tie price movements to demanded quantities (shares) in order to better understand asset market movements, volatility, and predictability. The model allows for investor heterogeneity and matches asset prices with institutional holdings. The authors illustrate estimating the demand system through several asset pricing applications, including:

- Estimating the price impact of demand shocks for all institutions and stocks. They find that the price impact for typical institutions has meaningfully decreased from 1980 to 2014. For example, for a typical investment advisor with a 10 percent demand shock for illiquid stocks, their impact has decreased by 30% (from 0.87 percent in 1980 to 0.25 percent in 2014).

- Separately estimating supply-side (i.e., changes in shares outstanding, changes in characteristics) and demand-side (i.e., changes in assets under management, loadings on characteristics) effects. The authors find that stock returns are mostly explained by latent demand shocks, not by changes in shares outstanding or changes in stock characteristics.

- Examining to what extent large institutions explain the stock market volatility experienced in 2008. They discover that the largest 25 institutions, which together account for one-third of the stock market, explain only 6 percent of the cross sectional volatility of stock returns. Smaller institutions, which also account for one-third of the market, however, explain 42 percent of cross sectional volatility. Interestingly, households which account for the remaining one-third of the market, explain 48 percent of volatility. The relatively low contribution of large institutional investors likely reflects their long-term, diversified holdings of more liquid stocks.

- Using the factor-based model to estimate expected returns for individual stocks. Results here are largely consistent with extant research — high expected-return stocks tend to be small-cap value stocks.

The model developed could be used to answer additional important questions related to the role of institutions in asset markets, yet would be difficult to answer with traditional regression, or event-based approaches. They suggest such applications could include answering regulatory questions like: How would a regulatory proposal, say bank reform, affect asset prices and real investment, or how might quantitative easing impact fixed income markets? It could also be used to answer questions about asset pricing such as: Which investor groups drive anomalous stock returns identified in academic research?
returns and what factors or characteristics contribute to (and to what degree) returns and volatility. Finally, the authors discuss additional important questions that the model could help answer for both financial regulators and practitioners.

AQR Capital Management, LLC, (“AQR”) provide links to third-party websites only as a convenience, and the inclusion of such links does not imply any endorsement, approval, investigation, verification or monitoring by us of any content or information contained within or accessible from the linked sites. If you choose to visit the linked sites, you do so at your own risk, and you will be subject to such sites’ terms of use and privacy policies, over which AQR.com has no control. In no event will AQR be responsible for any information or content within the linked sites or your use of the linked sites.

The information contained herein is only as current as of the date indicated, and may be superseded by subsequent market events or for other reasons. The views and opinions expressed herein are those of the author and do not necessarily reflect the views of AQR Capital Management, LLC, its affiliates or its employees. This information is not intended to, and does not relate specifically to any investment strategy or product that AQR offers. It is being provided merely to provide a framework to assist in the implementation of an investor’s own analysis and an investor’s own view on the topic discussed herein. Past performance is not a guarantee of future results.

Hypothetical performance results have many inherent limitations, some of which, but not all, are described herein. Hypothetical performance results are presented for illustrative purposes only.

Diversification does not eliminate the risk of experiencing investment loss.

Certain publications may have been written prior to the author being an employee of AQR.

This material is intended for informational purposes only and should not be construed as legal or tax advice, nor is it intended to replace the advice of a qualified attorney or tax advisor.